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During the last decade many attempts have been made to characterize absence
of spontaneous breaking of continuous symmetry for the Heisenberg model on
graphs by using suitable classifications of random walks (refs. 4 and 10). We
propose and study a new type problem for random walks on graphs, which is
particularly interesting for disordered graphs. We compare this classification
with the classical one and with an analogous one introduced in ref. 4. Various
examples, that are not space-homogeneous, are provided.

KEY WORDS: Random walk; limit on the average; generating function; sum-
mability methods.

1. INTRODUCTION

Random walks on graphs provide a mathematical model in many scientific
areas, from finance (financial modelling), to physics (magnetization prop-
erties of metals, evolution of gases), and biology (neural networks, disease
spreading). In particular graphs describe the microscopical structure of
solids, ranging from very regular structures like crystals or ferromagnetic
metals which are viewed as Euclidean lattices, to the irregular structure of
glasses, polymers, or biological objects.

Geometrical and physical properties of these discrete structures are
linked by random walks (especially the simple random walk), which usually
describe the diffusion of a particle in these more or less regular media.

An interesting feature of random walks on graphs is their large time
scale asymptotics which is deeply connected with the concept of recurrent or
transient random walk. This classification was first introduced by Pólya (15)



for simple random walks on lattices to distinguish between random walks
which return to the starting point with probability one (these are
recurrent), and those whose return probability is less than one (which are
transient).

We observe that in a vertex-transitive graph (such as the lattice Zd) the
return probabilities of the simple random walk do not depend on the start-
ing vertex; but in the case of a general irreducible random walk they may
differ from vertex to vertex, although being strictly less than one in one
vertex is equivalent to being strictly less than one in any vertex. The dis-
tinction between recurrent and transient random walks is known as the
type problem (for the type problem for random walks on infinite graphs,
see Woess (18)).

It has been recently observed that even though the type of a random
walk describes local properties of the physical model, average values of
return probabilities over all starting sites play a key role in the comprehen-
sion of the macroscopical behaviour of the model itself ( like spontaneous
breaking of continuous symmetries, (5) critical exponents of the spherical
model, (6) or harmonic vibrational spectra (2)). In particular Merkl and
Wagner (10) have shown that there is no spontaneous breaking of continu-
ous symmetries (for certain spin models) on recurrent graphs, but since
recurrence is not necessary, maybe a different notion of recurrence could
characterize the phenomenon.

As a conjectured characterization Burioni et al. (4) proposed recurrence
on the average, defining a new type problem: the type problem on the
average.

Definition 1.1. Given a random walk adapted to a graph X, its
family of generating functions of the n-step first time return probabilities
{F(x, x | z)}x ¥ X, and a reference vertex o ¥ X the random walk is transient
on the average (TOAt ) if

lim
z Q 1 −

lim
n Q .

;x ¥ B(o, n) F(x, x | z)
|B(o, n)|

< 1, (1)

and recurrent on the average (ROAt ) if the value of the limit is equal to 1
(B(o, n) is the closed ball, with respect to the natural metric of X, of center o,
and radius n, | · | denotes cardinality).

The ‘‘average’’ mentioned in the name given to this new type problem
is a repeated average over balls with fixed center and increasing radii
(of course existence of the limit of these averages is implicitly required). This
procedure is a particular case of the following: given a sequence {ln}n ¥ N of
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probability measures on the set X, for each n we consider the expected
value of F( · , · | z) with respect to ln, we take the limit of these averages
when n goes to infinity and we evaluate the limit for z going to 1 (to fit
definition (1) just take ln(x)=1B(o, n)(x)/|B(o, n)|).

From a mathematical point of view the definition of this ‘‘limit on the
average’’ leads to some problems, like the existence of the limit, the possi-
bility of exchanging the order of the two limits and the dependence on the
reference vertex o.

We provide an example of random walk which has no classification on
the average in the above sense (Example 3.1). Thus the classification on the
average is not complete, while the classical one in recurrent and transient
random walks is complete (we will refer to the usual classification as the
‘‘local’’ one, in contrast with the one ‘‘on the average’’).

In order to overcome the technical problems associated to Defini-
tion 1.1 we propose a more general approach (averages are taken with
respect to general sequences l={ln}n ¥ N, although a special attention is
paid to the example of averages over balls) and a different definition of
classification on the average (Definition 2.6: transient and recurrent on
average walks are denoted by l-TOA and l-ROA). This classification is
complete and is in many cases an extension of Definition 1.1.

We compare the two definitions and we give some criteria (Section 3.1).
In particular it appears that the two classifications coincide when the gener-
ating function of the first time return probabilities is a totally convergent
series ( Theorem 3.2(ii)): sufficient conditions for this property to be satisfied
are provided in Proposition 3.3. Other conditions are provided by suitable
uniform upper estimates for the n-step transition probabilities p (n)(x, x);
such estimates can be found in many papers: see, for instance, Barlow et
al., (1) Coulhon and Grigory’an, (7) Grigor’yan and Telcs, (8, 9) and Telcs. (17)

The question of the independence of the classification on the reference
vertex o (and in general on the choice of the sequence {ln}n ¥ N ) is inves-
tigated in Section 3.2.

In Section 3.3 we compare the classical (‘‘local’’) classification and the
classification on the average. In particular a flow criterion on the average
is proven ( Theorem 3.13), which should be compared with the ‘‘classical’’
one of Lyons (14) and Yamasaki. (19) Throughout Section 3 various examples
are provided to clarify the relations between the classifications (see Table I
for a complete overview).

In Section 4 we connect the behaviour of the random walk on the
subgraph to the behaviour of the random walk on the whole graph.
Section 5 discusses some open problems. The appendix shows that the
family of ‘‘measurable’’ sets, in the sense that we define in Section 2, is not
an algebra.
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Table I. Comparison between the Three Classifications

l-TOA, l-TOAt l-TOA, l-ROAt l-ROA, l-TOAt l-ROA, l-ROAt

Recurrent impossible impossible Example 3.12 Z2

(Remark 3.8) ( Theorem 3.2(i))

Transient Z3 impossible Example 3.4 Example 3.9
( Theorem 3.2(i))

2. BASIC DEFINITIONS

2.1. Random Walks

We recall here some notation. Given a random walk (X, P) we denote
by p (n)(x, y) the n-step transition probabilities from x to y (n \ 0) and by
f (n)(x, y) the probability that the random walk starting from x hits y for
the first time after n steps (n \ 1). Then we define the corresponding gen-
erating functions G(x, x | z)=;n \ 0 p (n)(x, x) zn (the Green function) and
F(x, x | z)=;n \ 1 f (n)(x, x) zn, where x ¥ X, z ¥ C (further details can be
found in Woess, (18) Chapter I.1.B, where F is called U). It is usual to write
F(z) instead of F( · , · | z) and F (or F( · , · )) instead of F( · , · | 1).

An irreducible random walk (X, P) is recurrent if F(x, x) for some
x ¥ X (equivalently for all x) and transient if F(x, x) < 1 for some x ¥ X
(equivalently for all x).

We recall here the flow criterion which characterizes transient net-
works. One can associate an electric network to a reversible random walk
(X, P) with reversibility measure m (see Woess, (18) Chapter I.2.A for the
definition) in the following way. We endow any edge with an orientation
e=(e−, e+) and with a resistance r(e)=(m(e−) p(e−, e+))−1 (in the case of
the simple random walk r(e)=1 for every edge e).

A flow u from a vertex x to infinity with input i0 at x is a function
defined on E(X) such that

C
e: e −=y

u(e)= C
e: e+=y

u(e)+i0dx(y), -y ¥ X.

The energy of u is defined as Ou, uP :=;e ¥ E(X) u(e)2 r(e). The existence of
finite energy flows is related with transience by the following theorem (see
Theorem 2.12 in ref. 18).

Theorem 2.1. Let (X, P) be a reversible random walk. The follow-
ing are equivalent:
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(a) the random walk is ( locally) transient;

(b) there exists x ¥ X such that (equivalently for all x ¥ X) it is pos-
sible to find a finite energy flow with non-zero input, from x to infinity.

2.2. Limits on the Average

We define a large scale average associated to a sequence of probability
measures on X.

Definition 2.2. Given a sequence l={ln}n ¥ N of probability mea-
sures on X and a function f: X Q R 2 { ± .} such that for any n ¥ N,
at least one of the functions f+ :=max(f, 0) and f− :=− min(f, 0) is
ln-summable. We denote by upper and lower limit on the l-average of f
respectively

L̄l(f) :=lim sup
n Q+.

C
x ¥ X

f(x) ln(x),

L
a l(f) :=lim inf

n Q+.

C
x ¥ X

f(x) ln(x).

If L̄l(f)=L
a l(f) we define

Ll(f)= lim
n Q+.

C
x ¥ X

f(x) ln(x).

Examples of l (which we keep in mind as reference) are ln(x)=
1Bn

(x)/|Bn | where either Bn=B(o, n), or, more generally, {Bn}n ¥ N is an
increasing family of finite subsets whose union is X. In the first case
(averaging over balls), we denote the map Ll by Lo (analogously L̄o and L

a o ).
The limits on the average are particular cases of summability methods

(see, for instance, ref. 13, Paragraph 4.10); if lim n Q . ln(x)=0 for any
x ¥ X (i.e., every finite subset of X is measurable and its measure is zero),
the limit on the average is called regular.

We note that the map Ll may be defined on complex-valued functions
as well, provided that the limit exists (indeed we will use the limit on the
average of generating functions).

Definition 2.3. Let D(Ll) :={f: X Q C: f ¥ 4n L1(ln) and Ll(f)
exists}. If A ı X is such that 1A ¥ D(Ll), then A is Ll-measurable (or
briefly measurable) and with a slight abuse of notation, we write Ll(A)
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instead of Ll(1A) (and we call it the Ll-measure of A or simply the measure
of A).

From now on, whenever we write Ll(f) or Ll(A), we implicitly
assume that the defining limits exist.

Remark 2.4. The set of Ll-measurable subsets is not, in general,
a s-algebra (nor an algebra: see Proposition A.1). Anyway it is easy to
show that: (i) if Ll(S)=0 and S − ı S then Ll(S −)=0; (ii) if Ll(S)=0 then
for every bounded function f, we have that 1S f ¥ D(Ll) and Ll(1S f )=0;
(iii) L̄(S)+L

a
(Sc)=1, for all S ı X.

We restate the definition of the type problem according to ref. 4 (and
we call it ‘‘thermodynamical’’ to distinguish it from the definition which we
will give in a moment).

Definition 2.5. Let (X, P) be a random walk, and l={ln}n ¥ N a
sequence of probability measures on X. Suppose that F( · , · | z) ¥ D(Ll),
for all z ¥ (e, 1), for some e ¥ (0, 1). The random walk is thermodynamically
transient on the average with respect to Ll (l-TOAt ) if

lim
z Q 1 −

Ll(F(z)) < 1, (2)

and thermodynamically recurrent on the average with respect to Ll

(l-ROAt ) if the limit is equal to 1.

The definition we counterpose is the following (and in both notations
l will often be tacitly understood).

Definition 2.6. Let (X, P) a random walk, and l={ln}n ¥ N a
sequence of probability measures on X. The random walk is transient on
the average with respect to Ll (l-TOA) if L

a l(F) < 1, recurrent on the
average with respect to Ll (l-ROA) if L

a l(F)=1.

3. THE CLASSIFICATION ON THE AVERAGE

From now on, if not otherwise stated, we assume that (X, E(X)) is a
connected (infinite), locally finite, nonoriented graph, that o is a fixed
vertex of X, that (X, P) is a random walk, a priori not necessarily adapted
to the graph (X, E(X)). Moreover, given S ı X we define “S :={x ¥ S :
,y ¨ S, (x, y) ¥ E(X)}.
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3.1. Thermodynamical Classification and Classification on the

Average

Some natural questions are: given a sequence l is every random walk
either l-TOAt or l-ROAt ? (Obviously, every random walk is l-TOA or
l-ROA). Can we reverse the order of the two limits in Eq. (2)?

When do two sequences of probability measures give the same classi-
fication? In particular, if we consider the averaging over balls with center o
(that is ln(x)=1B(o, n)(x)/|B(o, n)|), does the classification depend on the
choice of o ¥ X?

Regarding the first question, it is not difficult to find examples of
random walks with no thermodynamical classification.

Example 3.1. Let us consider the bihomogeneous tree Tn, m (which
is the tree where the degrees of vertices are alternatively n and m). Despite
its property of symmetry, the simple random walk on Tn, m (with n ] m) is
neither ROAt nor TOAt with respect to Lo, for any o ¥ Tn, m (but it is TOA
with respect to any Ll, see Example 3.14).

As for the second question, that is whether the limit in Eq. (2) coincides
with Ll(F), in general the answer is no. Anyway, if the series F(x, x) is
totally convergent, (that is ;n \ 1 kn converges, where kn=supx ¥ X f(n)(x, x)),
then existence of the limit in (2) implies existence of Ll(F) and these limits
coincide ( Theorem 3.2(i) and (ii)). In other words, under this condition
if the random walk is l-TOAt (or l-ROAt ) then it is also l-TOA (or
l-ROA). Theorem 3.2 compares the two classifications on the average and
provides some criteria.

Theorem 3.2. Let (X, P) be a random walk, . be the point added
to X in order to construct its one point compactification and l a sequence
of probability measure on X.

(i) If (X, P) is l-ROAt then Ll(F) exists and is equal to 1, and the
random walk is l-ROA.

(ii) If F(x, x) is a totally convergent series and (X, P) is l-TOAt

then Ll(F) exists, is strictly smaller than 1 and the random walk is l-TOA.

(iii) (X, P) is l-ROA . for every e > 0, Ll({x ¥ X : F(x, x) \ 1 − e})
=1.

(iv) (X, P) is l-TOA . there exists A ı X such that L̄l(A) > 0 and
supA F(x, x) < 1.
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If l is regular, the following hold:

(v) (X, P) is l-ROA . there exists A ı X, such that Ll(A)=1 and
lim x Q .

x ¥ A
F(x, x)=1.

(vi) If there exists A ı X such that L̄l(A) > 0 and lim x Q .

x ¥ A
F(x, x)=

a < 1 then the random walk is l-TOA.

Proof. (i) For each fixed x ¥ X, the map z W F(x, x | z) is a non-
decreasing function bounded from above by 1, hence for some e ¥ (0, 1)

1= lim
z Q 1 −

L
a l(F(z))= sup

z ¥ (e, 1)
L
a l(F(z)) [ L

a l(F) [ 1,

whence Ll(F)=1.

(ii) Since F(x, x) is totally convergent, gz(k)=;x ¥ X F(x, x | z) lk(x)
converges, uniformly with respect to k, as z tends to 1, |z| < 1, to g(k)=
;x ¥ X F(x, x) lk(x) (use Bounded Convergence Theorem). Thus by the
Double Limit Theorem ( Theorem 7.11 in ref. 16)

lim
z Q 1
|z| < 1

lim
k Q .

gz(k)= lim
k Q .

g(k),

that is

lim
z Q 1
|z| < 1

Ll(F(z))=Ll(F).

(iii) Let A+
e ={x ¥ X : F(x, x) \ 1 − e}, A−

e =(A+
e )c. Suppose that

(X, P) is l-ROA, then from

C
x ¥ X

F(x, x) ln(x) [ ln(A+
e )+(1 − e) ln(A−

e ),

taking the upper limit as n goes to infinity we get

0 [ L̄l(A−
e ) [ e−1(1 − L

a l(F))=0,

whence Ll(A+
e )=1.

Now suppose that Ll(A+
e )=1 for all e ¥ (0, 1), then

L
a l(F) \ L

a l(1A+
e

F) \ (1 − e) L
a l(A+

e )=1 − e,

whence Ll(F)=1 and (X, P) is l-ROA.
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(iv) It is a consequence of (iii) and of the fact that a random walk is
either l-ROA or l-TOA.

(v) Suppose there exists such A and observe that Ll(F)=Ll(1AF)
(provided that the limit exists). The assertion follows from

lim inf
x Q .

x ¥ A

F(x, x) [ L
a l(F) [ L̄l(F) [ lim sup

x Q .

x ¥ A

F(x, x). (3)

Let us prove the first inequality in (3): by definition

q :=lim inf
x Q .

x ¥ A

F(x, x)= sup
S ı A: |S| <+.

inf
x ¨ S

F(x, x),

thus for every e > 0 there exists a finite S such that for every x ¨ S,
F(x, x) > q − e and hence, by regularity,

C
x ¥ A

F(x, x) ln(x) \ C
x ¥ S

F(x, x) ln(x)+(1 − ln(S))(q − e) ||0
n Q+. q − e,

whence q [ L
a l(F). The other inequality is proven analogously.

Suppose now that (X, P) is l-ROA and let {Bn}n ¥ N be an increasing
sequence of finite subsets of X such that 1n ¥ N Bn=X. For any n ¥ N,
consider A+

1/n. Let us construct recursively two increasing sequences
{mi}i ¥ N and {n i}i ¥ N with values in N satisfying

˛lm(A+
1/i) > 1 − 1/i, -m \ m i;

lm(A+
1/i 5 Bni

) > 1 − 1/i, -m: m i [ m < m i+1.

This is possible since limm Q+. lm(A+
1/i)=1 for any i ¥ N and since (using

Monotone Convergence Theorem) lim n Q+. lm(A+
1/i 5 Bn)=lm(A+

1/i) >
1 − 1/i and the set {m: m i [ m < m i+1} is finite. We prove now that
A :=1.

i=1 (A+
1/i 5 Bni

) satisfies the two conditions in (iv).
If m satisfies m i [ m < m i+1 then

lm(A) \ lm(A+
1/i 5 Bni

) > 1 − 1/i

whence limm Q+. lm(A)=Ll(A)=1.
By regularity we have that Ll(A0Bni

)=1 which implies that
A0Bni

] ” and . is an accumulation point for A. Moreover if x ¥ A0Bni

we have that x ¥ A+
1/j for some j > i and hence F(x, x) > 1 − 1/j > 1 − 1/i;

which proves that lim x Q+.

x ¥ A
F(x, x)=1.

(vi) It is a consequence of (v). L
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Let us note that F(x, x) needs not to be totally convergent even in the
case of simple random walks (see Examples 3.4 and 3.12). Nevertheless,
under certain conditions the series F(x, x) is totally convergent.

Proposition 3.3. Let (X, P) be a random walk adapted to the
graph (X, E(X)). If one of the following conditions holds then the series
F(x, x) is totally convergent.

(i) There exists a subgroup C of AUT(X) (the automorphism
group of the graph) which acts quasi-transitively on X (i.e., with finitely
many orbits), such that P is C-invariant.

(ii) The radius of convergence of the Green function G(x, x | z)
(which is independent of x) is r > 1 (in this case the random walk is l-TOA
and l-TOAt for any sequence l).

(iii) (X, P) is reversible (with reversibility measure m and total con-
ductance a(x, y) :=m(x) p(x, y)) and it satisfies the strong isoperimetric
inequality that is

sup
A ı X

m(A)
s(A)

<+.,

where the supremum is taken over finite subsets A and s(A) :=
;x ¥ A, y ¥ Ac a(x, y).

Proof. (i) Let us pick a unique representative for each class of X/C

and call the set of these vertices X0. By hypotheses kn :=supx ¥ X f (n)(x, x)
=maxx ¥ X0

f (n)(x, x) [ ;x ¥ X0
f (n)(x, x). Hence ;.

n=0 kn [ ;x ¥ X0
F(x, x)

[ |X0 |.

(ii) It follows from f (n)(x, x) [ p (n)(x, x) [ 1/rn which holds for
every x ¥ X and every n ¥ N (see Kingman (12)).

(iii) By Theorem 10.3 of ref. 18 we have that the strong isoperimetric
inequality is equivalent to r > 1; then apply (ii) to conclude. L

For instance (i) applies to random walks adapted to Cayley graphs or
of the simple random walk on quasi transitive graphs.

As for condition (ii), an example is given by a locally finite tree with
minimum degree 2 and with finite upper bound on the lengths of its
unbranched geodesics (see Theorems 10.9 in ref. 18).

Total convergence may be typically deduced from suitable upper
estimates p (n)(x, x) [ j(n) for any n ¥ N and any x ¥ X. Such estimates can
be obtained under geometrical and probabilistic conditions: Barlow et al. (1)

(under some conditions for the volume growth), Grigor’yan and Telcs (9)
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(using conditions on the volume growth and the Green function). Other
estimates, which depends on the volume of the ball, (see Coulhon and
Grigory’an, (7) Grigor’yan and Telcs (8)) are useful to our purpose provided
that we are able to give a (uniform) lower bound for the volume itself.

We observe that even if (X, P) is both thermodynamically classifiable
and classifiable on the average, the two classifications may not agree, as is
shown by the following example.

Example 3.4. Let X :=1n ¥ N {n} × Zn+1. For any n, m ¥ N, p ¥ Zn+1,
q ¥ Zm+1, (n, p) and (m, q) are neighbours if and only if one of the follow-
ing holds (see Fig. 1)

(1) p=0Zn+1
and q=0Zm+1

and |m − n|=1,

(2) m=n and p − q= ± 1, (where p − q is the usual operation in
Zn+1 ).

Given {pn}n ¥ N a (0, 1)-valued sequence such that (pn)n
‘ 1 and a ¥ R,

0 < a < 1/3, we define the (adapted) transition probabilities as follows:

˛
p((0, 0), (1, 0))=p((1, 1), (1, 0))=1,
p((1, 0), (1, 1))=p1+(1 − p1) a,
p((n, 0), (n − 1, 0))=(1 − pn) a, n \ 1,
p((n, 0), (n+1, 0))=(1 − pn)(1 − 2a), n \ 1,
p((n, p), (n, p+1))=pn, n \ 2,
p((n, p), (n, p − 1))=(1 − pn), n \ 2, p ] 0,
p((n, 0), (n, n − 1))=(1 − pn) a, n \ 2.

By using standard stopping time arguments we easily see that this random
walk is locally transient.

If we denote by Cn :={(n, p): p ¥ Zn+1}, for any x ¥ Cn, we have
that f (n)(x, x) \ (pn)n and f (m)(x, x) [ 1 − f (n)(x, x) for all m ] n. Thus
limx Q . f (m)(x, x)=0 for any m ¥ N and if z ¥ (0, 1) by Bounded Conver-
gence Theorem (using zm \ f (m)(x, x) zm) we derive limx Q . F(x, x | z)=0.
Whence for any regular l we obtain Ll(F(z))=0 which implies that the
random walk is l-TOAt.

Fig. 1. A graph which is TOAt and ROA.
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On the other hand F(x, x) \ f (m)(x, x) for any x ¥ X, m ¥ N, hence
if x ¥ 1m \ n Cm we have that F(x, x) \ infm \ n (pm)m=(pn)n which implies
limx Q . F(x, x)=1 and (always for any regular l) Ll(F)=1 (that is, the
random walk is l-ROA). Since the classification on the average and the
thermodynamical one are different this provides also an example of a
random walk for which the series F(x, x) is not totally convergent
( Theorem 3.2(ii)).

3.2. Comparison of Different Averages

When do two different sequences {ln}n ¥ N and {gn}n ¥ N induce the
same classification? A particular case is the question of the independence of
the Lo-classification on the average on the reference vertex o.

Proposition 3.5. Let l={ln}n ¥ N, g={gn}n ¥ N two sequences of
probability measures on X. Let us consider the following assertions:

(i) there exist two divergent sequences {in}n ¥ N and {jn}n ¥ N of
natural numbers, and two positive constants C, K such that Cl in

(x) \

gn(x) and Kgjn
(x) \ ln(x) for every n and x;

(ii) for every A ı X, Ll(A)=1 if and only if Lg(A)=1;

(iii) a random walk (X, P) is ROA (respectively TOA) with respect
to Ll if and only if it is ROA (respectively TOA) with respect to Lg.

Then (i) S (ii) S (iii).

Proof. (i) S (ii) It is easy (consider Ll(Ac) and Lg(Ac)).

(ii) S (iii) By Theorem 3.2(iii) l-ROA is equivalent to Ll(Ae)=1 for
all e > 0, where Ae={x ¥ X : F(x, x) \ 1 − e} and by hypothesis this is
equivalent to Lg(Ae)=1. L

Consider now the case ln(x)=1B(o, n)(x)/|B(o, n)|. It has been shown
in ref. 4 Section 4 that, if the graph has bounded geometry and

lim
n Q+.

|“B(o, n)|
|B(o, n)|

=0 (4)

for some o, then the thermodynamical limit on the average is independent
of the choice of o. This condition is not satisfied, for instance, by any
homogeneous tree of degree greater than 2, or by any ‘‘fast growing’’
graph.
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Applying Proposition 3.5 we find another topological condition (which
is weaker than (4)) implying that the classification on the average (as
defined in Definition 2.6) does not depend on the fixed vertex o.

Theorem 3.6. Let (X, E(X)) be such that there exists x ¥ X
satisfying

sup
n ¥ N

|S(x, n+1)|
|B(x, n)|

<+., (5)

(where S(x, n+1) is the sphere centered in x with radius n+1) then the
Lo-classification on the average of any random walk is independent of the
choice of o.

Proof. Let o and o − be two reference vertices in X, d(o, o −)=l, and
put ln(x)=1B(o, n)(x)/|B(o, n)|, gn(x)=1B(oŒ, n)(x)/|B(o −, n)|. From (5) one
deduces that, for n sufficiently large, gn(x) [ Cl l+n(x). The assertion
follows from Proposition 3.5. L

We observe that (5) is satisfied by any graph with bounded geometry.
On the other hand, bounded geometry is not necessary, as is shown by the
following example.

Example 3.7. Given a vertex x0, construct the tree T as follows:
x0 has one neighbour in S(x0, 1) and each vertex in S(x0, m) has exactly
one neighbour in S(x0, m+1) if m ] k2 for all k=1, 2,..., and exactly k
neighbours if m=k2. Then T satisfies Eq. (5) and does not have bounded
geometry.

3.3. Local Classification and Classification on the Average

Let us now make some comparisons between the local classification
and the classification on the average of a random walk. The following
remark is obvious.

Remark 3.8. If (X, P) is locally recurrent, then Ll(F)=1 and the
random walk is l-ROA for any given sequence l.

Example 3.4, which is locally transient, l-TOAt and l-ROA, shows
that local transience does not imply transience on the average. The follow-
ing example shows that local transience does not imply thermodynamical
transience on the average.
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Fig. 2. A slow-growing tree.

Example 3.9. Given the sequence of natural numbers {sj=;j
i=1 bi}j \1,

where b \ 2 is an integer number, s0=0 and o is the root, the construction
of the tree T is similar to the one in Example 3.7. Each element on the
sphere S(o, m) has exactly one neighbour on the sphere S(o, m+1) if
m ] sj for any j \ 0 and exactly a neighbours if m=sj (a ¥ N) (Fig. 2
represents the case a=3, b=2). An application of Theorem 2.1 proves
that T is locally transient if and only if a > b (see, for instance, Remark 4.3
in ref. 20).

Consider ln(x)=1B(o, n)(x)/|B(o, n)|; it is easy to prove that the set A
obtained by removing from X the balls of radius k centered in the elements
of S(o, sk), for all k ¥ N, has Lo-measure equal to 1. Moreover on A, for
every fixed n, as x tends to infinity f (n)(x, x) is definitively equal to f (n)

Z

(the first time return probabilities of the simple random walk on Z, which
do not depend on the starting vertex). Hence as in (3) one can show that
Lo(f (n)( · , · ))=Lo(f (n)

Z ( · , · )). Then using Fubini and Bounded Conver-
gence Theorem,

C
x ¥ X

C
j

f (j)(x, x) z jln(x)

=C
j

C
x ¥ X

f (j)(x, x) z jln(x)Łn Q . Ll(FZ(z))Łz Q 1−
1.

Thus the graph is ROAt (and ROA) with respect to Lo with any reference
vertex o.

It is known that ( local) transience is equivalently expressed by a con-
dition on the Green function: G(x, x) :=G(x, x | 1)=+. for some (i.e.,
for every) x ¥ X. In the average case we can only claim a partial result.
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Proposition 3.10. Let (X, P) be a random walk. Then:

(i) if the random walk is l-ROAt then lim z Q 1 − L
a l(G(z))=+.;

(ii) if the random walk is l-ROA then Ll(G)=+..

Proof. Let j(t) :=1/(1 − t), it is known (see ref. 18) that G(x, x | z)=
j(F(x, x | z)) for all x ¥ X and for all z ¥ R, |z| < 1. By Jensen’s inequality

j 1 C
x ¥ X

F(x, x | z) ln(x)2 [ C
x ¥ X

G(x, x | z) ln(x).

If we take the limit as n goes to infinity of both sides of the previous equa-
tion, taking into account the continuity of j,

j(Ll(F(z)))= lim
n Q+.

j 1 C
x ¥ X

F(x, x | z) ln(x)2

[ lim inf
n Q+.

C
x ¥ X

G(x, x | z) ln(x)=: L
a l(G(z));

hence

lim
z Q 1 −

L
a l(G(z)) \ lim inf

z Q 1 −
j(Ll(F(z)))=+..

The case Ll(F)=1 is completely analogous (note that ;x ¥ X G(x, x) ln(x)
may be equal to +. for some n ¥ N). L

Observe that in Proposition 3.10(i) existence of Ll(G(z)) is not
guaranteed and then we have to consider L

a l instead. Also notice that
reversed implications are not true, see for instance Example 3.11, which in
ref. 4 is called a mixed l-TOAt graph. It provides an example of random
walk which is l-TOA even if Ll(G)=+.. Moreover Example 3.11 is TOA
if we average over balls, but it is ROA if we average over a suitable family
of subsets.

Example 3.11. Let X be the graph obtained from Z3 by deleting all
horizontal edges joining vertices with positive height (compare with ref. 4
where this graph is an example of mixed l-TOAt and see Fig. 3): we call
X+ the set of vertices with (strictly) positive height and X− =Xc

+. The
simple random walk on X is locally transient ( Theorem 2.1), indeed there
is a finite energy flow u defined on E(Z3) from the origin o to . with input 1.
By Corollary 4.7 we have that the simple random walk is TOA if we
average over balls and Lo(G)=+.. More generally it is TOA with respect
to any Ll such that L̄l(X− ) > 0 and Ll(G)=+. if and only if Ll(X+)
> 0.
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Fig. 3. A graph whose classification depends on l.

The same graph is ROAt (thus ROA) with respect to Ll with ln=
1Bn

(x)/|Bn |, where {Bn=(B(o, 2n) 5 X+) 2 (B(o, n) 5 X− )}n ¥ N. Indeed
Ll(X− )=0 and, if we denote by Xn={x ¥ X : d(x, X− ) [ n}, then
Ll(Xn)=0 for all n ¥ N. Moreover f (j)(x, x)=f(j)

Z for all j ¥ N, x ¥ Xc
j

(and f (j)(x, x) [ f (j)
Z if x ¥ Xj ). Then using Fubini and Bounded Conver-

gence Theorem,

C
x ¥ X

C
j

f (j)(x, x) z jln(x)

=C
j

C
x ¥ Xj

f (j)(x, x) z jln(x)

+C
j

C
x ¥ Xc

j

f (j)(x, x) z j ln(x)Łn Q . Ll(FZ(z))Łz Q 1−
1.

The following example was suggested by D. Cassi, R. Burioni, and
A. Vezzani as an example of random walk which is locally recurrent (thus
ROA with respect to any Ll ) but l-TOAt for any suitable choice of l.

Example 3.12. Let X be the graph obtained by attaching at each
vertex i of N a cube lattice Ci of side n i by one of its corners (in Fig. 4,
n i=i). Suppose that n i diverges. Then the simple random walk on X is
locally recurrent (according to Theorem 2.1), hence it is also ROA with
respect to any Ll.

Let Bn=1n
i=1 Ci and consider ln(x)=1Bn

(x)/|Bn |. The simple
random walk on X is l-TOAt. Indeed for each k ¥ N, let Xk be the set of
all the vertices at distance at most k from the surface of the cubes. Then
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Fig. 4. A locally recurrent but TOAt graph.

Ll(Xk)=0 and f (k)(x, x)=f(k)
Z

3 for all x ¥ Xc
k, where f (k)

Z
3 is the k-step first

time returning probability in Z3. The rest of the proof is analogous to the
one for the previous example.

We recalled in Section 1 that Theorem 2.1 gives a useful tool to
(locally) classify reversible random walks. A similar result can be stated for
the classification on the average.

Theorem 3.13. Let (X, P) be a reversible random walk, with
reversibility measure m satisfying inf m(x) > 0, sup m(x) <+. ( in partic-
ular this condition is satisfied by the simple random walk on a graph with
bounded geometry). Then, for any given sequence l, the following are
equivalent:

(a) the random walk is l-TOA;

(b) there exists A ı X such that: L̄l(A) > 0, for all x ¥ X, i0 ] 0 there
is a finite energy flow ux from x to . with input i0 and supx ¥ A Oux, uxP
<+..

Proof. We consider (X, P) ( locally) transient (otherwise the random
walk is l-ROA).

(a) S (b) Recall that ux=− i0
m(x) NG( · , x) is a finite energy flow from

x to . with input i0 and energy

Oux, uxP=
i2

0

m(x)
G(x, x), (6)

(where N denotes the difference operator, see Theorem 2.12 in ref. 18).
But by Theorem 3.2(iv) the network is l-TOA if and only if there exists
a < 1, A ı X such that L̄l(A) > 0 and F(x, x) [ a for every x ¥ A. Since
G(x, x)=1/(1 − F(x, x)) this is equivalent to supx ¥ A G(x, x) <+.. By
Eq. (6) and our hypotheses on the reversibility measure, this implies (b).
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(b) S (a) It suffices to show that supx ¥ A G(x, x) <+., but this is a
consequence of the estimate

G(x, x) [
m(x)Oux, uxP

i2
0

,

which can easily be deduced from the proof of Theorem 2.12 in ref. 18. L

As an application we classify bihomogeneous trees and a whole family
of inhomogeneous trees.

Example 3.14. Consider the bihomogeneous tree Tm, n and a couple
of vertices xn and xm, the first with degree n and the second with degree m
(in Fig. 5, m=3 and n=2). There are two finite energy flows un and um

with fixed input i0, respectively from xn to infinity and from xm to infinity.
Thus, translating un or um (depending on the degree of x), we obtain a
finite energy flow from any vertex x to infinity (with input i0 ). By
Theorem 3.13 this proves that the simple random walk on Tm, n is l-TOA
(the for any l). Moreover, since Lo(F) does not exist for any reference
vertex o, and the series F(x, x) is totally convergent by Proposition 3.3(i)
(with C=AUT(X)), then by Theorem 3.2(i) and (ii) the simple random
walk on Tm, n is not thermodynamically classifiable.

Analogously one shows that the simple random walk on a tree T −

k, n

whose vertices have degree 2 or k (k \ 3) and such that the distance
between ramifications is n (n \ 2) is l-TOA (while in the preceding case we
had only two flows, here we have at most [n/2]+1 flows).

Now consider an inhomogeneous tree T'

k, n whose vertices have degree
2 or k (k \ 3) and such that the distance between ramifications does not
exceed n (n \ 2): see Fig. 6 for the case k=3 and n=2. Here the family of

Fig. 5. A bihomogeneous tree.
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Fig. 6. A nonhomogeneous tree.

finite energy flows (depending on the vertex chosen for the input) can be
easily constructed from the family of flows of T −

k, n (by deleting an appro-
priate subset of vertices) in such a way that the supremum of the energies
on T'

k, n is bounded from above by the maximum of the energies on T −

k, n.

4. SUBGRAPHS AND GRAPHS

In this section we study information which can be inferred from the
knowledge of the behaviour of random walks on subgraphs.

Since we want to average on a subgraph, the first thing to do is to
normalize the weights.

Definition 4.1. Let l={ln}n ¥ N be a sequence of probability mea-
sures on X and S ı X such that ln(S) > 0, for all n ¥ N. Then the limit on
the average LS

l defined on S by lS
n :=ln |S/ln(S) for every n ¥ N and x ¥ S

is called normalized limit on the average (analogously for L̄S
l and L

a
S
l ).

The following straightforward lemma links LS
l and Ll.

Lemma 4.2. Let S ı X be an Ll-measurable subset with positive
Ll-measure and f a function defined on X, then:

(i) f|S ¥ D(LS
l ) . 1S f ¥ D(Ll),

(ii) if f|S ¥ D(LS
l ) then Ll(1S f )=LS

l (f|S) · Ll(S),

(iii) L
a l(1S f )=L

a
S
l (f|S) · Ll(S) and L̄l(1S f )=L̄S

l (f|S) · Ll(S).

Let us consider the average of the generating function F related to
a random walk (X, P). There are two different ways of looking at the
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behaviour of the random walk on a subgraph S ı X. The first one is to
consider S as a subset of the graph with F(x, x) restricted to the sites in S.
The second approach is to view S as an independent graph, with possibly
different generating functions F(x, x).

We start with the first point of view. Lemma 4.2 implies that sets of
measure zero have no weight in the averaging procedure (think of S such
that Ll(S)=1: then LS

l (F|S)=Ll(F)); hence for the Lo-classification
slowlier growing subgraphs are not influent.

Remark 4.3. Let X=X1 2 X2, where X1 5 X2 is finite. Suppose
that |B(o, n) 5 X1 |/|B(o, n) 5 X2 | Q 0 as n goes to infinity (X1 grows
slowlier than X2 ). Then Lo(X1)=0 and the Lo-classification of any
random walk on X depends only on the restriction of the generating func-
tion F on X2.

For the local classification of an irreducible random walk the existence
of a vertex x such that F(x, x) < 1 guarantees transience. The following
corollary of Lemma 4.2 is an analog for the classification on the average.

Corollary 4.4. Let (X, P) be a random walk and let S ı X such
that Ll(S) > 0. If the restriction of F to S satisfies L

a
S
l (F|S) < 1 then (X, P)

is l-TOA.

Proof. Let {nj}j ¥ N be such that

lim
j Q .

C
x ¥ S

F(x, x) lnj
(x)=L

a
S
l (F|S) < 1

and let gj :=lnj
. Then Lg(S)=Ll(S) > 0, LS

g (F|S)=LS
l (F|S) and

L
a l(F) [ L

a g(F)=LS
g (F|S) Lg(S)+LS c

g (F|S c) Lg(Sc)

[ 1 − (1 − L
a

S
l (F|S)) Ll(S) < 1. L

Similarly, under certain conditions, one can obtain the precise value of
Ll(F) from the limiting values of F on each subgraph of a partition of X.

Lemma 4.5. Let Xa :=X 2 {.} be the one point compactification
of X and let {Ai}

k
i=1 be a partition of X such that each A i is Ll-mea-

surable. Suppose that for every i such that Ll(A i) > 0 there exists
limx Q . F|Ai

(x, x)=a i. Then, for any regular l, Ll(F) exists and is equal
to ;k

i=1 Ll(Ai) a i.

The proof is analogous to Theorem 3.2(vi) and uses Lemma 4.2.
Moreover the same result can be proven with a countable partition,
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provided that ;i ¥ N F(x, x) 1Ai
(x) converges uniformly to F(x, x) with

respect to x ¥ X (uniformity is exploited as in Theorem 3.2(ii)).
We remark that even though sets of measure zero have no influence

on the resulting limit on the average of the function F their presence may
change the return probabilities and hence the function F that we average.
This is the main difficulty of the second approach.

We know that local transience (even if on the whole graph) does not
imply that the random walk is l-TOA, but under certain regularity condi-
tions local transience of the simple random walk on a subgraph (regarded
as an independent graph) implies that the simple random walk on the
whole graph is l-TOA.

Theorem 4.6. Let l be a sequence of probability measures on X
and (A, E(A)) be a subgraph of X such that L̄l(A) > 0. Suppose that there
exists x0 ¥ A such that for every vertex y ¥ A there exists an injective map
cy: A Q A such that (i) cy(x0)=y and (ii) for any w, z ¥ A, (w, z) ¥ E(A)
implies (cy(w), cy(z)) ¥ E(A). If the simple random walk on (A, E(A)) is
transient then the simple random walk on (X, E(X)) is l-TOA.

Proof. Let us consider (A, E(A)) with the edge orientation induced
by X. Let u be a flow on (A, E(A)) with finite energy starting from x0 to
infinity with input 1. Given any simple random walk, the conductance is
the characteristic function of the edges, hence for any y ¥ A it is easy to
show that the following equation

uy(a, b) :=˛ ecy
(a, b) u(cy

−1(a), cy
−1(b)) if (a, b) ¥ E(A);

0 if (a, b) ¨ E(A);
-(a, b) ¥ E(X)

(where ecy
(a, b) is equal to +1 or − 1 according to (cy(a), cy(b))+=

(x, y)+ or not) define a flow uy on (X, E(X)) starting from y to . with
input one and with the same energy as u. Apply now Theorem 3.13. L

We observe that the condition on A in the previous statement is a
requirement of ‘‘self-similarity’’ of A (take for instance Cayley graphs).

Corollary 4.7. Let l be a sequence of probability measures on X
and (G, E(G)) be a Cayley graph and A ı G such that (i) the group identity
e ¥ A, (ii) for any x, y ¥ A we have that xy ¥ A, and (iii) the simple random
walk on (A, E(A)) is transient. If (X, E(X)) is a locally finite graph which
contains (A, E(A)) as a subgraph and L̄l(A) > 0 then the simple random
walk on (X, E(X)) is l-TOA.
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Now we want to partition X into two subgraphs A and B and deduce
average properties of an adapted random walk on X from the behaviour of
its restrictions to A and B. The first question is what is meant as restriction
of a random walk to a subgraph.

Definition 4.8. Let (S, E(S)) be a subgraph on (X, E(X)) and let
(X, P) be a random walk on (X, E(X)). A random walk (S, PS) is called
induced random walk on S if for every x ¥ S0“S and every y ¥ S we have
that pS(x, y)=p(x, y).

We note that in general the induced random walk is not uniquely
determined (there are different choices on “S), but if n ¥ N and x ¥ S are
such that d(x, “S) \ n then

f (n)(x, x)=f(n)
S (x, x), p (n)(x, x)=p(n)

S (x, x). (7)

We require that “A and “B have Ll-measure zero. Then we need that
f (n) and f (n)

A coincide outside a negligible set and this can be proven for the
Lo-measure.

Lemma 4.9. Let (X, E(X)) be a graph with bounded geometry and
C a subset of X such that Lo(C)=0. Let Xn={x ¥ X : d(x, C) [ n}, then
Lo(Xn)=0 for every n ¥ N.

Proof. We note that for every n, r ¥ N, Xn 5B(o,r)ı1x¥C5B(o, n+r) B(x,n)
and by hypotheses,

|B(o, r+n)|/|B(o, r)| [ sup
x ¥ X

|B(x, n)|=: M.

Then

|Xn 5 B(o, r)|
|B(o, r)|

[ M
|C 5 B(o, r+n)|

|B(o, r)|
[ M2 |C 5 B(o, r+n)|

|B(o, r+n)|
||0
r Q+. 0. L

To prove our result for the thermodynamical classification we need a
technical lemma which claims that two generating functions with coeffi-
cients that coincide but for a zero Ll-measure set, have the same Ll limit.

Lemma 4.10. Let H1(x, z)=;.

n=0 an(x) zn, H2(x, z)=;.

n=0 bn(x) zn,
where an and bn are nonnegative functions on X, for all n ¥ N. Suppose
that ;.

n=0 knzn, where kn=max{supx ¥ X an(x), supx ¥ X bn(x)}, has positive
radius r of convergence. Moreover suppose that for every n ¥ N there exists
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Xn ı X such that Ll(Xn)=0 and an(x)=bn(x) for all x ¥ Xc
n. Then for all

z ¥ C, |z| < r, H1( · , z) ¥ D(Ll) if and only if H2( · , z) ¥ D(Ll) and

Ll(H1(z))=Ll(H2(z)),

(the same assertion holds also with L̄l or L
a l ).

Proof. Let us choose z such that |z| < r. Using Bounded Conver-
gence Theorem it is not difficult to prove that

lim
n Q .

C
.

i=0
C

x ¥ Xi

ai(x) z iln(x)=0.

Hence it is obvious that (if the limit exists)

Ll(H1(z))= lim
n Q .

C
.

i=0
C

x ¥ Xc
i

ai(x) z iln(x).

But by the hypotheses ai(x)=bi(x) on Xc
i , whence the limit coincides with

Ll(H2(z)). L

In the next theorem, for a general l, one could require Ll(Xn)=0 for
all n, but for the sake of briefness we treat only the case of the Lo-clas-
sification. Moreover, in this particular case one has to pay attention to the
role played by the metric d which appears in Eq. (7) as well as in the defi-
nition of the balls. To avoid further complications we assume that X is
partitioned in two subgraphs A and B which are starlike. A subgraph A is
starlike if there exists o − ¥ A such that for every x ¥ A at least one geodesic
path (in X) from o − to x lies in A (thus we are sure that dA(o −, x)=
dX(o −, x) and we denote this distance simply by d). Under this hypothesis,
LoŒ(f) considered with dA is the same as LoŒ(f) considered with dX.
Moreover, if (X, E(X)) has bounded geometry, these limits coincide with
Lo(f) for all o ¥ A.

To simplify notations, we also require that A 5 B={o}, but this is no
severe restriction, since it implies that we choose o ¥ “A, B −=B 2 {o} and
we redefine B=B −.

Theorem 4.11. Let (X, E(X)) be an infinite graph with bounded
geometry and let (A, E(A)), (B, E(B)) be two subgraphs such that
A 2 B=X, {o}=A 5 B, and A, B are starlike. Moreover suppose that
Lo(A) > 0, Lo(B) > 0, and Lo(“A)=0. Let P be a stochastic matrix repre-
senting a random walk on X (adapted to (X, E(X))) and let us consider
two induced random walks (represented by PA and PB ) on the subgraphs
(A, E(A)) and (B, E(B)). The following hold:
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(i) if any two of (X, P), (A, PA), (B, PB) is Lo-thermodynamically
classifiable, then so is the third.

If (X, P), (A, PA), (B, PB) are Lo-thermodynamically classifiable, then

(ii) (A, PA) is TOAt implies that (X, P) is TOAt;

(iii) if Lo(A) < 1 then (X, P) is ROAt if and only if (A, PA) and
(B, PB) are both ROAt.

Proof. (i) We note that since deg( · ) is bounded, we have that
Lo(“A)=0 if and only if Lo(“B)=0. Since

F(z) − 1AF(z) − 1BF(z)+1{o}F(z)=0, (8)

by hypothesis at least three of these functions belongs to D(Lo) and hence
also the remaining one does. Lemma 4.10 yields to the conclusion.

(ii) Let F and FA be the generating functions (depending on x ¥ X
and z ¥ [0, 1)) of the hitting probabilities associated to P and PA respec-
tively. By the hypotheses F(z) ¥ D(Lo) and FA(z) ¥ D(LA

o ) for all z ¥ (e, 1),
for some e ¥ (0, 1). By Eq. (7) and Lemma 4.9 we have that f (n) and f (n)

A

coincide on A except for a LA
o -negligible set, hence we can apply Lemma 4.10

to FA and F|A obtaining that F|A(z) ¥ D(LA
o ) and LA

o (F|A(z))=LA
o (FA(z))

for all z ¥ (e, 1). By Lemma 4.2 we have that LA
o (FA(z))=LA

o (F|A)=
Lo(1AF(z))/Lo(A). From Eq. (8) we get

Lo(F(z)) [ LA
o (FA(z)) Lo(A)+(1 − Lo(A)), (9)

whence if lim z Q 1 − LA
o (FA(z)) < 1 it follows that lim z Q 1 − Lo(F(z)) < 1.

(iii) The only if part is a consequence of (ii). As for the if part,
define C=“A 2 “B and Xn={x ¥ X : d(x, C) [ n}. Then if x ¥ A 0Xn,
f (n)(x, x)=f(n)

A (x, x) and if x ¥ B 0Xn, f (n)(x, x)=f(n)
B (x, x). Applying

Lemmas 4.10 and 4.2

Lo(F(z))=LA
o (FA(z)) Lo(A)+LB

o (FB(z)) Lo(B)Łz Q 1−
Lo(A)+Lo(B)=1. L

The previous theorem is different from those in ref. 4 since here a
subgraph A is regarded as an independent graph with an induced random
walk. In ref. 4, one is supposed to study the generating function F of
(X, P) to classify the random walk; in our approach one can study inde-
pendently two (hopefully) simpler random walks PA and PB (on A and B
respectively) and then the classification of the main random walk can be
inferred.

970 Bertacchi and Zucca



Fig. 7. Two ‘‘bridged’’ chains.

Unfortunately, in general a similar result does not hold for the classi-
fication on the average we introduced in this paper, as is shown by the
following example.

Example 4.12. Let X be the graph in Fig. 7, constructed by two
copies of Z: the vertices of the upper copy are denoted by (1, i) and the
ones of the lower copy by (−1, i) (i ¥ Z). Vertices (1, 2 i), i=0, 1,..., are
linked by an (oriented) edge with vertices (−1, −2 i) and so are vertices
(−1, 2 i) and (1, −2 i). Given a fixed e ¥ (0, 1/2), the random walk is
described as follows: in the upper copy of Z there is a probability 1 − e of
moving leftwards and e of moving rightwards, but for the vertices (1, 2 i),
where the walker may move to (1, 2 i+1), (1, 2 i − 1), (−1, −2 i) with prob-
ability (1 − e)/2, e/2, and 1/2 respectively. The transition probabilities
on the lower copy of Z are then obtained by symmetry (hence with a
rightward drift). By standard arguments one can prove that (X, P) is
recurrent (hence l-ROA for any l). Besides, if we cut all the ‘‘bridges’’
(which are a set of Lo-measure zero) and redefine the transition probabil-
ities on the two disjoint copies of Z such that p(i, i+1)=1 − e and
p(i, i − 1)=e (i ¥ Z), it is clear that these two random walks are transient
and TOA with respect to Lo.

5. CONCLUSIONS

In this paper we proposed a new classification of random walks and
we showed how to manage it from a technical point of view.

It seems reasonable to consider also the ‘‘dual’’ classification obtained
by substitution in Definition 2.2 of the L

a l with the L̄l.

Definition 5.1. Let (X, P) be a random walk and l={ln}n ¥ N a
sequence of probability measures on X. The random walk is l̄-ROA
(respectively l̄-TOA) if and only if L̄l(F)=1 (resp. L̄l(F) < 1).

We observe that there are more random walks which are l̄-ROA than
random walks which are l-ROA. Moreover a random walk is l̄-TOA if
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and only if there exist e > 0 and n0 ¥ N such that for any n \ n0 we have
;x ¥ X F(x, x) ln(x) < 1 − e.

With slight differences, it is possible to prove similar results for this
new classification. For instance we state the analogues of Theorems 3.2
and 3.13.

Theorem 5.2. Let (X, P) be a random walk and let . be the point
added to X in order to construct its one point compactification. Let l be a
regular limit on the average.

(i) If (X, P) is l-ROAt then Ll(F)=1 and the random walk is
l̄-ROA.

(ii) If F(x, x) is a totally convergent series and (X, P) is l-TOAt

then Ll(F) < 1 and the random walk is l̄-TOA.

(iii) (X, P) is l̄-ROA . for every e > 0, L̄l({x ¥ X : F(x, x) \ 1 − e})
=1.

(iv) (X, P) is l̄-ROA . there exists A ı X, such that L̄l(A)=1 and
lim x Q .

x ¥ A
F(x, x)=1.

(v) (X, P) is l̄-TOA . there exists A ı X such that L
a l(A) > 0 and

supA F(x, x) < 1.

(vi) If there exists A ı X such that L̄l(A)=1 and lim x Q .

x ¥ A
F(x, x)

=a < 1 then Ll(F)=a and the random walk is l̄-TOA.

Theorem 5.3. Let (X, P) satisfy the hypotheses of Theorem 3.13,
then the following are equivalent:

(a) the random walk is l̄-TOA;

(b) there exists A ı X such that L
a l(A) > 0, there is a finite energy

flow ux from x to . with non-zero input i0 for every x ¥ A and
supx ¥ A Oux, uxP <+..

The main goal is now to characterize the family of (inhomogeneous)
graphs with absence of spontaneous breaking of continuous symmetries.
From ref. 10 we know that this family contains the class of recurrent
graphs. Hence, one has to weaken the concept of recurrence taking into
account the properties of ‘‘almost all’’ the vertices of the graph. Unfortu-
nately the thermodynamical classification fails on particularly ‘‘nasty’’
examples (Examples 3.1 and 3.12), although it is not clear whether these
examples have physical meaning or not. Our classification enlarges the
class of ‘‘recurrent’’ graphs (and the classification with L̄ does so even
more). We think that the techniques employed here to classify our

972 Bertacchi and Zucca



examples may be useful to classify graphs with a finite number of ‘‘types of
inhomogeneity’’ (in a sense which should be formalized, see also ref. 3).
The connection between continuous symmetry breaking and recurrence on
the average is an open problem which deserves future investigations, which
could start from the analysis of graphs with only a few such types of
inhomogeneity.

APPENDIX A: Ll-MEASURABLE SETS ARE NOT AN ALGEBRA

Proposition A.1. Let {Bn}n ¥ N be an increasing family of subsets
whose union is X, and ln(x)=1Bn

(x)/|Bn |. Then the class of Ll-measur-
able subsets is not an algebra; in particular there exist A, B Ll-measurable
subsets of X such that A 5 B is not Ll-measurable.

Proof. Let us define, for every n ¥ N, mn :=|Bn |; let {Ak, Ck}k ¥ N be a
family of subsets of X such that for every k ¥ N, {Ak, Ck} is a partition of
Sk=Bk 0Bk − 1 with the following two properties

|Ak | − |Ck | ¥ {0, ± 1}, -k ¥ N,

:0
k

i=0
A i
:− :0

k

i=0
Ci
: ¥ {0, ± 1}, -k ¥ N.

Let us define for every k ¥ N, ak :=|1k
i=0 A i |, ck :=|1k

i=0 Ci |; since X is
infinite, we can choose an increasing sequence of natural numbers {kn}n

such that mkn+1
/mkn

\ 4. It is easy to note that by our hypotheses, for every
n, i ¥ N,

1
2

−
1

mn
[

an

mn
[

1
2
+

1
mn

1
2

−
1

mn
[

cn

mn
[

1
2
+

1
mn

m i − 2
mn+2

[
ai

an
[

m i+2
mn − 2

.

(10)

We finally define the two sets

A :=0
.

i=0
A i, B :=0

.

i=0

1 0
k2i+1

j=k2i+1
Aj 2 0

k2i+2

j=k2i+1+1
Cj
2 ;
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by Eq. (10) (since |A 5 Bn |=an ) we have that A is measurable and Ll(A)
=1/2; similarly ||B 5 Bn | − cn| [ 1+|{i ¥ N : ki < n}|. Since mkn+1

/mkn
\ 4

we have that lim n Q+. |{i ¥ N : ki < n}|/mn=0 (observe that if |{i ¥ N :
ki < n}|=j then mn \ 4 j), then by Eq. (10) we obtain that B is also mea-
surable and Ll(B)=1/2. Moreover A 5 B=1.

i=0 1k2i+1
j=k2i+1 Aj, hence if n

is odd

|A 5 B 5 Bkn
|

|Bkn
|

\
akn

mkn

11 −
akn − 1

akn

2
||0
n Q+.

1
4

;

similarly when n is even (since mkn+1
/mkn

\ 4 and using Eq. (10))

|A 5 B 5 Bkn
|

|Bkn
|

[
akn − 1

mkn

.

Since lim inf n Q+.

akn − 1
mkn − 1

mkn − 1
mkn

[ 1/8, we have that L
a l(A 5 B) [ 1/8 mean-

while 1/4 [ L̄l(A 5 B) which implies that A 5 B is not measurable. L
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